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ABSTRACT

We propose a fast and accurate calibration method for the optical
see-through (OST) head-mounted displays (HMD), taking advan-
tage of a low-cost time-of-flight depth-camera. Recently, afford-
able OST-HMDs and depth-cameras are widely appearing in the
commercial market. In order to correctly reflect the user experi-
ence into the calibration process, our method demands a user wear-
ing the HMD to repeatedly point at rendered virtual circles with
their fingertips. From the repeated calibration data, we perform two
stages of full calibration and simplified calibration, to compute key
calibration parameters. The full calibration is required when the
depth-camera is first installed to the HMD, and afterwards only the
simplified calibration is performed whenever a user wears it again.
Our experimental results show that the full and simplified calibra-
tion can be achieved with 10 and 5 user’s repetitions (theoretically
3 and 2 at minimum), which are significantly less than about 20
of the stereo-SPAAM, one of the most popular existing calibration
techniques. We also demonstrate that the 3D position errors of our
calibration become much quickly smaller than those of the state-of-
the-art method.

Keywords: Calibration, optical see-through head-mounted dis-
play, depth-camera.

1 INTRODUCTION

Optical see-through head-mounted displays (OST-HMDs) are de-
vices that allow a user to see virtual 3D objects without blocking
the outside view. In order to create an immersive user experience,
the virtual objects and physical environment must be accurately po-
sitioned relative to each other, which requires a correct calibration
of OST-HMDs. Contrary to the calibration of the normal cameras
used in computer vision and photogrammetry, the calibration of
OST-HMDs has an unique obstacle that it is impossible to directly
observe retinal images of users. Therefore, it has been a challenge
to design a cost-effective and accurate solution for general users to
easily accomplish.

The objective of this paper is to propose a simple and fast calibra-
tion method for the low-cost OST-HMDs. Especially, our method
comes through the wide availability of affordable time-of-flight
depth-cameras and their integration with the OST-HMDs. Such in-
tegrated consumer devices have recently began to be released such
as Meta 1. Or one can build their own system by simply installing
a depth-camera to an OST-HMD. In the proposed calibration pro-
cess, we demand a user wearing the OST-HMD to repeat pointing
at virtual circles with their fingertips. Using the depth-camera, we
can directly obtain the 3D coordinates of fingertips; from such re-
peated calibration data, our method estimates the key calibration
parameters. We consider the two stages of full calibration and sim-
plified calibration. We perform the full calibration only when the
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depth-camera is first installed to the HMD. Afterwards, unless the
depth-camera moves on the HMD, only the simplified calibration is
sufficient whenever a user takes off and wears it again.

In our experiments, we show that the full and simplified calibra-
tion can be successfully achieved with only 10 and 5 user’s repe-
titions (theoretically 3 and 2 at minimum) respectively, which are
significantly less than about 20 of the stereo-SPAAM [4], one of
the most popular calibration techniques. Moreover, we also demon-
strate that the 3D position errors of our calibration method are much
smaller than those of the state-of-the-art method.

The calibration of OST-HMDs has been extensively studied for
the development of augmented reality (AR) systems. Janin et al.
develop one of the earliest methods [9], which use simple linear
transformation and projection to align the coordinates of the work-
piece, the virtual screen, the position sensor, and the user’s eyes in
the same coordinate system. Azuma and Bishop analyze static and
dynamic errors for the calibration of OST-HMDs [1]. They use an
optoelectronic tracker for accurate static registration across a wide
range of viewing angles and positions. They also exploit inertial
sensors mounted on the HMD for cancellation of dynamic errors
caused by a user’s head motion. Holloway studies a list of registra-
tion error sources (e.g. optical distortion and tracker measurement
errors), and reveals their magnitudes [6]. McGarrity et al. intro-
duce a calibration method that allows a user to interactively adjust
the parameters by matching displayed virtual images with the real
objects [11]. This method is dynamic in the sense that it does not
require the user’s head to be immobilized during calibration, using
a 6-DOF magnetic tracker. Tuceryan and Navab propose one of the
most successful and user-friendly methods called Single Point Ac-
tive Alignment Method (SPAAM) [18]. Initially this method deals
with only monocular OST-HMDs, and later is extended to stereo-
SPAAM for binocular OST-HMDs in a following paper [4]. Using
the magnetic tracker attached to the camera for measuring its 6-
DOF position, this method requires the subject to repeatedly align
a crosshair presented in the HMD to the one in a real space. The
crosshair alignment is sequentially performed multiple times, for
example 18 times (i.e. 9 for each of left and right eye) [17].

As the SPAAM has emerged as a practical solution to calibration,
the following methods mainly focus on reducing calibration time,
because the calibration involves users’ intervention of several min-
utes, and ideally it should be re-done every time the HMD moves
on users’ head. Genc et al. propose two-staged SPAAM2 [5], in
which an offline calibration is performed in advance to store extrin-
sic projection parameters that do not change according to the HMD
moving, and then online calibration is performed for a specific user
by collecting only a smaller number of data points. Owen et al.
propose a similar two-phase calibration method named Display-
Relative Calibration (DRC) [12]. This method shares the idea of
the offline calibration, which is the first phase of measuring the pa-
rameters of the display system relative to the calibration coordinate
system. Then it proposes several alternatives for the second phase
that calibrates the eye positions relative to the display reference sys-
tem. Kellner et al. propose another geometric calibration method
with the two-phase concept [10], which can be done with less time
than the SPAAM, by tracking a 6-DOF head-attached marker and a



3-DOF hand-attached marker.
The next advance of calibration methods has focused on improv-

ing the online calibration. Itoh and Klinker propose Interaction-
free Display Calibration (INDICA), which performs online cali-
bration automatically with an RGB eye tracking camera attached to
the HMD [8]. It uses the SPAAM to obtain the parameters of of-
fline calibration, and then makes online calibration easier and more
reliable by utilizing dynamic 3D eye position measurements from
an eye tracking camera. Plopski et al. develop a similar method
named Corneal-Imaging Calibration (CIC) [13]. The difference of
the CIC from the INDICA is that the INDICA estimates the eyeball
position from the iris detection, whereas the CIC estimates the eye
position using the corneal reflection. The common properties of the
both methods are that they require an RGB camera attached to the
HMD toward users’ eyes, and assume the eye pinhole model known
by exterior measurements. However, since the human vision sys-
tem largely involves the visual process of the brain, the perceptual
pinhole centers of eyes are hard to know through physical measure-
ments. In other words, the anatomical pinhole centers of eyes may
not coincide with the perceptual ones unless the visual process of
the brain is completely understood [14, 15, 16]. Therefore, it can
be more useful to include a certain amount of user interactions to
make sure that users correctly see and feel.

To conclude the introduction, we highlight the main contribu-
tions of this paper as follows.

(1) To the best of our knowledge, this work is the first to utilize
the depth-camera for the calibration of OST-HMDs. We consider
two stages of full and simplified calibration. The full calibration is
performed once when the depth-camera is first installed, while the
simplified calibration is carried out whenever a user wears it again.

(2) Our calibration method is a time-efficient and user-friendly
procedure in the two respects. First, it does not require any exter-
nal devices, but exploit users’ fingertips only. Second, as far as we
know, it requires minimum users’ feedback among existing meth-
ods. Our calibration is successful with about 10 and 5 times of user
interactions for full and simplified calibration (theoretically 3 and 2
at minimum), respectively.

(3) In experiments, we show that our method is robust enough to
work with an affordable OST-HMD and a low-cost depth-camera
that do not require high-precision performance. We demonstrate
the calibration accuracies of our method are higher than those of
stereo-SPAAM [4], with fewer calibration data.

2 OVERVIEW

Our method calibrates the rendering process of OST-HMDs using
an attached depth-camera. The scope of the OST-HMD system
consists of three parts; a pair of displays, a depth-camera, and a
user wearing it. For the displays, the correct intrinsic parameters
(e.g. field of views) are usually provided by manufacturers. For
the depth-camera, the parameters are categorized into intrinsic and
extrinsic ones. We assume that the depth-camera is intrinsically
calibrated and attached to the HMD, which is a reasonable assump-
tion because in most cases the intrinsic parameters (e.g. field of
views and offsets) are provided by manufacturers or, if not, they
can be obtained by its own separate calibration [19]. For a user, we
consider two types of parameters, which are interpupillary distance
(IPD) and the position of user eyes. In summary, our calibration
aims to calculate the extrinsic parameters of the depth-camera, and
the two users parameters, while the intrinsic parameters of displays
and the depth-camera are known a priori.

We demand users to repeat pointing at rendered virtual circles
with their fingertips. From the repetition data, our method calcu-
lates key calibration parameters. We consider two types of calibra-
tion; full and simplified calibration. The full calibration calculates
both the camera extrinsic parameters and the user parameters, while
the simplified calibration obtains only the user parameters with less

Figure 1: (a) A depth map measured from the depth-camera. (b) The
coordinate systems and transformation used in our calibration model.

user repetitions. The details of both types will be presented in sec-
tion 4.

It is worth noting that we use fingertips to obtain calibration
data only because we want to perform calibration without using
any extra device unlike other existing approaches, including stereo-
SPAAM. Our calibration method described below is orthogonal to
this setting; as long as a user can assign correspondences between
actual and virtual targets as calibration data, our method can cor-
rectly calibrate, no matter where the calibration data exist in the
space.

3 MATHEMATICAL MODEL

Our OST-HMD model consists of a pair of displays, a depth-
camera, and a pair of eyes (See Figure 1). We assume that the depth-
camera and the eye pair are based on the pinhole model, which ab-
stracts a visual system with perspective projection to a pinhole-like
center. Although we use the pinhole model for the eyes, we do
not try to find out the physical pinhole centers of the eyes for the
two reasons. First, it is hard to anatomically measure the accurate
centers of the users’ eyeballs. Second, since the perception actu-
ally occurs in the brain, the perceptual eye projections are likely
to be different from the physical ones. Instead, our method aims
at obtaining the perceptual pinhole centers of the users, based on
the user interactions. We assume that the displays have infinite fo-
cal lengths without parallax, which is a well-known technique that
mitigates eye fatigue in the implementation of head-up displays
(HUDs). Similarly, in almost all OST-HMDs, such infinite focal
lengths are also realized by an optical collimator that emits parallel
lights; eventually it can prevent users from repeatedly refocusing
from the real world to the virtual world or vice versa, which can
bother the users. Finally, we assume that the displays are symmet-
ric to each other, and thus have the same projection matrices except
their flipped horizontal offsets.

Figure 1 illustrates the depth-camera coordinate system and the
eye coordinate system used in our model. The depth-camera coor-
dinate system has its origin at the camera’s center and its x/y axis
corresponds to the right/upward direction of the camera’s images,
using a right-handed coordinate system. The eye coordinate system
has its origin at the center of two eyes; it defines the x axis toward
the right eye center and the z axis in the direction opposite to the
OST-HMD. We assume that the OST-HMD is worn in the way that
the z axis is perpendicular to the surface containing OST-HMD dis-
plays. This is based on the nature of OST-HMDs, whose eye boxes
of the displays, where the wearers’ eyes exist, are very tight to dis-
allow the eyes tilted, from which they can deliver the virtual view
as large as possible.



Figure 2: The triangular similarity for an initialized interpupillary dis-
tance (IPD) II (= |lIrI |) and an actual IPD IA (= |lArA|).

We represent a point in a 3D space by p from the depth-camera
coordinate system and by v from the eye coordinate system. If the
OST-HMD system is perfectly calibrated, the virtual objects in the
display are shown in coincidence with the real object. With an ex-
ample of Figure 1, the calibration makes the rendered hands per-
fectly overlap with the real hand. Therefore, the point v can be
interpreted as a 3D position of a virtual point that corresponds to
p. We use A to denote a linear transformation from p to v in a
homogeneous coordinate system:

v = Ap, (1)

where A ∈ R4×4 and v, p ∈ R4×1. The calibration is identical to
finding the linear transformation A. We decompose A into a combi-
nation of three matrices for rotation RA, translation tA, and isotropic
scaling sA.

A =

[
sAI3 03,1
01,3 1

][
I3 tA

01,3 1

][
RA 03,1
01,3 1

]
. (2)

In summary, we have three parameters associated with the OST-
HMD calibration: (i) camera rotation (RA ∈ R3×3), (ii) camera
translation (tA ∈ R3×1), and (iii) scaling by a user’s IPD (sA ∈ R).
First, a point p obtained by the depth-camera is rotated by RA and
translated by tA so that it is aligned with the eye coordinate sys-
tem. Then, it is scaled isotropically by sA so that the interpupillary
distance is calibrated to the user, which will be discussed in sec-
tion 3.1.

Historically, our formulation is based on [7], which first pro-
posed a closed-form solution for such decomposition of a lin-
ear transformation to a combination of translation, rotation, and
isotropic scaling.

3.1 Interpupillary Distance
The interpupillary distance (IPD) is the distance between the cen-
ters of a user’s two eyes. As discussed, we use the fact that OST-
HMDs are usually manufactured so that its displays have infinite
focal lengths without parallax, which makes the ray direction of
each pixel not change according to the eye translation. Using that
the pixels have fixed ray directions, we can show the relation of the
isotropic scaling between the IPD and the rendered point v in a 3D
space as follows.

In Figure 2, suppose that lI and rI are the initialized (i.e. un-
calibrated) left and right eye centers, whereas lA and rA are the ac-
tual (i.e. calibrated) eye centers. Obviously, the initialized IPD is
II = |lIrI |, and the actual IPD is IA = |lArA|. For the initialized IPD,
we set II = 63 mm based on a statistical study of [3]. vI and v are
the rendered points in 3D when we use the initialized and actual
IPDs, respectively. o is the origin of the eye coordinate system.
Considering lIrI and lArA are on the x axis of the eye coordinate
system and the direction of each pixel is fixed, we obtain

lArA ‖ lIrI , lAv ‖ lIvI , rAv ‖ rIvI .

We then have the similarity between triangles of 4vlArA ∼
4vI lIrI , from which it is easy to obtain the ratio between −→ov and−→ovI as

−→ov =−→orA +
−→rAv =

IA

II

−→ovI . (3)

We represent the transformation from−→ovI to−→ov using sA of Equa-
tion 2. From Equation 3, we have

v =
[

sAI3 03,1
01,3 1

]
vI =

[ IA
II

I3 03,1
01,3 1

]
vI . (4)

Consequently, it is straightforward to see

sA =
IA

II
. (5)

4 CALIBRATION METHODS

The calibration of the OST-HMDs reduces to finding a correct A
of Equation 1, which is a combination of translation, rotation, and
isotropic scaling in Equation 2. We collect point pairs by asking
users to point virtual circles with their fingertips. Here the positions
of a virtual circle are {vi} and their corresponding positions pointed
by a user are {pi}. Our objective is to find A that minimizes the
mean square error between {vi} and {pi}, based on Equation 1:

Â = argmin
A

∑
i
||vi−Api||2. (6)

We consider two different calibration settings for practical rea-
sons. One is the full calibration that computes all calibration pa-
rameters with no assumption, while the other is the simplified cal-
ibration with a known RA. In other words, the full calibration
is required when the depth-camera is first installed to the HMD,
and the simplified one is performed as long as the depth-camera is
firmly fixed on the HMD. For example, the simplified calibration
is sufficient whenever a user is changed or he/she wears the HMD
again. Obviously, the simplified calibration needs less user repeti-
tions thanks to a lower degrees of freedom. We describe the full
and simplified calibration in section 4.1 and 4.2, respectively.

4.1 Full Calibration
For full calibration, we solve A of Equation 6 without additional
assumption. We here do not use the homogeneous coordinate, and
represent A with tA, RA, and sA (i.e. parameters in Equation 2):

v = sA(RA p+ tA). (7)

where v, p, tA ∈R3×1, RA ∈R3×3, and sA ∈R1×1. Then Equation 6
becomes

t̂A, R̂A, ŝA = argmin
tA,RA,sA

∑
i
||vi− sA(RA pi + tA)||2. (8)

For convenience, we define the centroids as

v̄ =
1
n

n

∑
i=1

vi p̄ =
1
n

n

∑
i=1

pi, (9)

where n is the number of collected calibration point pairs. We then
standardize the data using centroids

v′i = vi− v̄ p′i = pi− p̄. (10)

The objective of Equation 8 becomes
n

∑
i=1
||v′i− sARA p′i||2−2t ′A ·

n

∑
i=1

(v′i− sARA p′i)+n||t ′A||2

=
n

∑
i=1
||v′i− sARA p′i||2 +n||t ′A||2, (∵

n

∑
i=1

v′i = 0,
n

∑
i=1

p′i = 0) (11)



where t ′A = sAtA− (v̄− sARA p̄). In order to minimize Equation 11,
the second term n||t ′A||2 ≥ 0 that is always nonnegative has to be
zero. That is, ||t ′A||= 0, from which

sAtA− (v̄− sARA p̄) = 0 ⇒ t̂A =
v̄
ŝA
− R̂A p̄. (12)

Once we obtain the solution of t̂A, we optimize R̂A and ŝA by

R̂A, ŝA = argmin
RA,sA

n

∑
i=1
||v′i− sARA p′i||2

= argmin
RA,sA

n

∑
i=1
||v′i||2−2sA

n

∑
i=1

(RA p′i · v′i)+ s2
A

n

∑
i=1
||p′i||2

= argmin
RA,sA

αs2
A−2β sA + γ, (13)

where α =
n

∑
i=1
||p′i||2, β =

n

∑
i=1

(RA p′i · v′i), γ =
n

∑
i=1
||v′i||2. (14)

In Equation 13, we use the notation (·) for the inner product,
and α , β , and γ are scalar values. In practice, α > 0 (i.e. for
some data i, ||p′i||> 0), because α = 0 happens only when the user
perfectly points the same location in all repetitions, which is nearly
impossible. The optimal ŝA is obtained when we set the partial
derivative of Equation 13 with respect to sA to be zero:

ŝA =
β

α
=

∑
n
i=1(R̂A p′i · v′i)
∑

n
i=1 ||p′i||2

. (15)

Although ŝA of Equation 15 is the exact solution of sA for Equa-
tion 8, as Horn [7] suggests, we use an approximation of Equation
15 that is symmetric between pi and vi as follows:

ŝA ≈

√
∑

n
i=1 ||v′i||2

∑
n
i=1 ||p′i||2

. (16)

This approximation is applied to alleviate the instability of the
solution by Equation 15, which often generates too small ŝA. Sub-
stituting Equation 16 into Equation 13 reduces to

R̂A = argmin
RA

α ŝ2
A−2β ŝA + γ = argmax

RA

β , (17)

because α ≥ 0,γ ≥ 0, ŝA ≥ 0 and ŝA is independent from RA. To
solve Equation 17, we represent the rotation RA with a quaternion
qA that satisfies RA p′i = qA p′iq

∗
A. Therefore, from Equation 14

β =
n

∑
i=1

(qA p′iq
∗
A) · v′i. (18)

We introduce three key properties of quaternions necessary for
solving the new form of β [7]. The proofs can be found in Ap-
pendix A. For a quaternion p = pw+ ipx+ jpy+kpz, and its vector
representation [pw px py pz]

T , we define the left and right matrices
of the quaternion, P and P̄:

P =

pw −px −py −pz
px pw −pz py
py pz pw −px
pz −py px pw

 , P̄ =

pw −px −py −pz
px pw pz −py
py −pz pw px
pz py −px pw

 .
We use the notation (∗) for conjugations of quaternions (e.g.

p∗ = pw − ipx − jpy − kpz), and (·) for the dot product between
quaternions (e.g. p ·q = pwqw + pxqx + pyqy + pzqz).

Property 1 Let p, q, and r be quaternions. Then,

(pq) · r = p · (rq∗).

Property 2 Let p and q be quaternions. If we define the left and
right matrices of the quaternion p by P and P̄, then

pq = Pq, qp = P̄q.

Property 3 Let q be a vector corresponding to a unit quaternion
and N be a 4×4 matrix. When λ is the largest eigenvalue of N and
ν is the eigenvector corresponding to λ , then

∀q, qT Nq≤ ν
T Nν .

With Property 1 and Equation 18, we have

β =
n

∑
i=1

(qA p′i) · (v′iqA). (19)

Applying Property 2 to Equation 19, we derive another form of
β :

β =
n

∑
i=1

qT
A P̄′Ti V ′i qA = qT

A(
n

∑
i=1

P̄′Ti V ′i )qA = qT
A NqA, (20)

where P̄′i is the right matrix of p′i, V ′i is the left matrix of v′i, and
N = ∑

n
i=1 P̄′Ti V ′i ∈ R4×4. The components of N ism11 +m22 +m33 m23−m32 m31−m13 m12−m21

m23−m32 m11−m22−m33 m12 +m21 m31 +m13
m31−m13 m12 +m21 −m11 +m22−m33 m23 +m32
m12−m21 m31 +m13 m23 +m32 −m11−m22 +m33

 ,
where mab is the (a,b)-th element of matrix M = ∑

n
i=1 p′iv

′
i
T . Note

that M ∈ R3×3 because p′i,v
′
i ∈ R3×1. From Equation 17 and 20,

R̂A = argmax
RA

qT
A NqA.

By Property 3, R̂A corresponds to the rotation composed by the
elements of quaternion q̂A = [q̂w q̂x q̂y q̂z]

T , which is the eigen-
vector for the maximum eigenvalue of N. Using the conversion
formula, R̂A is obtained from q̂A:

R̂A =

 1−2q̂2
y −2q̂2

z 2(q̂xq̂y− q̂wq̂z) 2(q̂xq̂z + q̂wq̂y)

2(q̂xq̂y + q̂wq̂z) 1−2q̂2
x −2q̂2

z 2(q̂yq̂z− q̂wq̂x)
2(q̂xq̂z− q̂wq̂y) 2(q̂yq̂z + q̂wq̂x) 1−2q̂2

x −2q̂2
y

 ,
(21)

where q̂A = q̂w + iq̂x + jq̂y + kq̂z. In summary, we estimate A by
plugging t̂A of Equation 12, R̂A of Equation 21, and ŝA of Equa-
tion 16 into

Â =

[
ŝAI3 03,1
01,3 1

][
I3 t̂A

01,3 1

][
R̂A 03,1
01,3 1

]
.

4.2 Simplified Calibration
The simplified calibration is different from the full calibration that
it assumes RA is known. Unless the depth-camera moves on the
HMD, the simplified calibration is enough for a new user. Its main
benefit is that we can reduce the degree of freedom, which de-
creases the user’s input repetition. We let the known fixed RA de-
noted by RF , and then Equation 8 changes to

t̂A, ŝA = argmin
tA,sA

∑
i
||vi− sA(RF pi + tA)||2. (22)



Method Known Unknown DOF Min # data
F – tA, RA, sA 7 ( = 3 + 3 + 1) 3
S RA tA, sA 4 ( = 3 + 1) 2

Table 1: Comparison between full (F) and simplified (S) calibration.
From left to right, each column indicates known and unknown pa-
rameters, degrees of freedom, and minimum number of calibration
data.

Algorithm 1: OST-HMD Calibration Algorithm
input : (1) Number of repetition: n. (2) (For simplified

calibration only) the rotation matrix RA
output: Estimated transformation : Â
1: {pi}← {}; {vi}← {};
while |{pi}|< n do

2: Render a virtual circle on the displays and wait for the
user to point the virtual circle;
3: {pi}← {pi}+ position of the fingertip by
depth-camera;
4: {vi}← {vi}+ position of the virtual circle;

/* Full calibration */
5: Compute t̂A, ŝA, R̂A by Equation 12, 16, 21, respectively;
6: Construct Â by Equation 2;
/* Simplified calibration */
5: Compute t̂A, ŝA by Equation 23 and 24, respectively;
6: Construct Â by Equation 25;

The derivation of the key parameters is the same with that of full
calibration in section 4.1; only difference is to substituting RF into
R̂A. As a result, we have the scaling and translation parameters from
Equation 12 and 16, respectively.

t̂A =
v̄
ŝA
−RF p̄, (23)

ŝA ≈

√
∑

n
i=1 ||v′i||2

∑
n
i=1 ||p′i||2

. (24)

Finally, we estimate A and calibrate the OST-HMD:

Â =

[
ŝAI3 03,1
01,3 1

][
I3 t̂A

01,3 1

][
RF 03,1
01,3 1

]
. (25)

4.3 Analysis of the Calibration Method

Table 1 summarizes the comparative analysis between full and sim-
plified calibration, including known and unknown parameters, de-
grees of freedom, and minimum number of calibration data. The
degrees of freedom of translation (tA), rotation (RA), and scaling
(sA) are 3, 3, and 1, respectively. Since each user interaction pro-
duces 3 independent parameters, we need 3 calibration points for
the full calibration at minimum, while 2 calibration points for the
simplified calibration. However, for accurate estimation, our em-
pirical results recommend about 10 and 5 calibration points for full
and simplified calibration, respectively. Finally, Algorithm 1 sum-
marizes the whole procedure of our OST-HMD calibration.

5 EXPERIMENTS

We empirically show that the proposed calibration is not only more
accurate but also easier and faster for a general user than existing
methods such as stereo-SPAAM [4]. In section 5.2, we compare be-
tween the calibration methods in terms of accuracies and the num-
ber of users’ input repetitions. In section 5.3, we report qualitative
results.

Figure 3: The Meta 1 system (left) and an actual calibration proce-
dure by a user’s repetitive pointing (right).

5.1 Experimental Setup
For evaluation, we use Meta 11 in Figure 3, which is an affordable
OST-HMD equipped with 3D see through displays and a 3D time-
of-flight depth-camera. The resolution of each display is 960×540.
We use Unity3D2, OpenCV [2], iisu3, and ALGLIB4 to implement
the proposed calibration methods.

Since the quality of calibration can be solely measured by users
who wear the HMD, we design our quantitative evaluation based
on the user feedback. We recruit 20 people who are not familiar to
OST-HMDs, and after careful instruction we ask each of them to
point a randomly positioned virtual circle 50 times. We use {pi} to
denote the positions of a single user’s pointing fingertips from the
camera coordinate system, and {vi} to denote the positions of the
virtual circles from the eye coordinate system. In order to obtain
a stable {pi}, we use the average of the depth measurements of
a fingertip from 20 consecutive frames. We measure the position
errors {ei} as the difference from corresponding pairs of {pi} and
{vi}:

ei = vi−Api. (26)

The sources of errors in our measurement are two-fold: cali-
bration errors and non-calibration errors. The calibration errors
are originated from inaccurate estimation of A, whereas the non-
calibration indicates the other remaining errors, which mainly come
from humans’ incorrect pointing to the virtual circles. That is, even
with a perfectly calibrated HMD, a human may not be always able
to correctly point the circles. Therefore, the calibration error is min-
imized and fixed after the calibration, and the non-calibration error
can always occur whenever a user points a virtual circle, which is
modeled to follow a Gaussian distribution.

For a position error ei, we denote the calibration error by ẽ and
the non-calibration error by e′i. With the law of large numbers, if
the size of {ei} denoted by n is large enough, the mean of the non-
calibration errors approximately becomes zero. Therefore, the cal-
ibration error is

1
n

n

∑
i=1

e′i ≈ 0 ⇒ ẽ =
1
n

n

∑
i=1

ẽi =
1
n

n

∑
i=1

(ei− e′i)≈
1
n

n

∑
i=1

ei. (27)

5.2 Quantitative Results
We compare our full and simplified calibration with the stereo-
SPAAM, one of the most popular calibration techniques [4]. In
our experiments, the original stereo-SPAAM often suffers from too
large errors (e.g. even several meters), especially when novice users
perform calibration. Hence, one main update for the stereo-SPAAM
is that we fix the z value of the estimated depth-camera position

1https://www.getameta.com/
2https://unity3d.com/
3http://www.softkinetic.com/Products/iisuMiddleware
4http://www.alglib.net/



(a) Total position errors (MAEp) (b) Calibration errors (MAEc) (c) Non-calibration errors, (MAEn)

Figure 4: Analysis of position errors of full calibration, simplified calibration and stereo-SPAAM. We show the results of total position errors in (a),
calibration errors in (b), and non-calibration errors in (c).

Figure 5: Variation of calibration errors (MAEc) according to the num-
ber of calibration points.

to zero; otherwise the calibration accuracy of the stereo-SPAAM
severely fluctuates. Note that fixing the z value is favorable for the
stereo-SPAMM by excluding one dimension of errors (i.e. provid-
ing the answer for one dimension). In next section, we will show
that our method does not take advantage of this fixation, but still
significantly outperforms the stereo-SPAMM. Appendix B presents
the details of the modification and how to obtain the position errors
as a performance measure.

We use the 3D position errors as the evaluation metric, instead of
2D projection errors that are measured from the left and right dis-
plays. The main reason is that the results with a small 3D position
error guarantee a more robust calibration. The OST-HMD with a
small 2D projection error can be vulnerable to even a small amount
of rotational disturbance, for example, if a user slightly rotates her
viewing direction, a small 2D projection error can change to a very
large one, whereas that that of 3D position error does not.

We let {p j
i } and {v j

i } to denote a set of positions of fingertips
and virtual circles by user j. We also use n and m for the size of
each point set and the number of users. We use n = 50 and m = 20
in our experiments. We measure the mean absolute errors (MAE)
as the metric of the position errors e j

i , calibration errors E j, and
non-calibration errors ε

j
i as follows:

MAEp =
1
m ∑

j

1
n ∑

i
||e j

i ||. (28)

MAEc =
1
m ∑

j
||1

n ∑
i

e j
i || ≈

1
m ∑

j
||E j||. (29)

MAEn =
1
m ∑

j
∑

i
(||e j

i −
1
n ∑

i
e j

i ||)≈
1
m ∑

j
∑

i
||ε j

i ||. (30)

We show the MAEs of the position errors, calibration errors, and
non-calibration errors in Figure 4(a)–(c), respectively. The MAEc
decreases as the number of repetition increases, but the MAEp con-
verges to 2 cm instead of the ideal zero. This bias is due to the

non-calibration errors (i.e. MAEn), which cannot be completely re-
moved by calibration and depends on the users’ skills. It is also
supported by Figure 4(c) in which the non-calibration errors do not
decrease with more number of points for calibration (i.e. as n in-
creases, MAEc → 0⇒MAEp = MAEn). In the results of stereo-
SPAAM, the magnitude of MAEc is not linear with the number of
calibration points due to the lack of robustness. As shown in Fig-
ure 4, they include many spurious outliers, which are the points
with large calibration errors.

Since more calibration points cost a user to spend more time for
calibration, it is important to find an appropriate number of cali-
bration points, which we denote by n∗. As shown in Figure 5, the
magnitude of MAEc can be a criteria for finding the appropriate
number of calibration points since it indicates how accurately the
calibration is done. For an error threshold of 1 cm, 11 points are
needed for the full calibration and 8 points are needed for the sim-
plified calibration. This is due to the difference in the degree of
freedom of full and simplified calibration, as in Table 1. However,
since the error quickly drops with a few initial points, fewer points
may be acceptable (e.g. 10 and 5 for full and simplified calibration).

Figure 6 shows the distribution of the non-calibration errors in
the three planes. We plot them using the minimum number of cali-
bration points for each calibration method, as recommended in the
quantitative results of previous section 5.2: 11 (full), 8 (simplified),
and 20 (stereo-SPAAM) points. We observe that the shapes of the
distributions are similar between calibration methods. It indicates
that the non-calibration errors of Equation 27 are independent to
the calibration methods. In addition, Figure 6 also validates our
assumption that the non-calibration errors follow a Gaussian dis-
tribution, and thus the law of large numbers is applicable to Equa-
tion 27. The variance along the z axis is wider than the others, while
the variances of x and y axes are similar. The wider distribution of
the z axis is natural since the depth perception of OST-HMDs orig-
inates from horizontal disparity, whose scale is related to the IPD
(e.g. 63 mm), while the scale of z is related to the arm length (e.g.
50 cm). Such scale discrepancy makes the z-axis errors larger than
x and y-axis errors.

5.3 Qualitative Results

We present qualitative results of how the calibration influences the
rendering of virtual objects. Figure 7 shows a real hand and a cup
and their rendered images in the displays after calibration. Since the
results of full calibration and simplified calibration are almost the
same, we compare only between the full calibration and the stereo-
SPAAM. When each of the real objects in Figure 7(a) is in front
of an OST-HMD, its virtual images that appear on the displays are
Figure 7(b)–(c) for the full calibration and Figure 7(d)–(e) for the
stereo-SPAAM. As shown in Figure 7(b)–(c), the full calibration
leads that the shapes of both images are almost equal except that



(a) x− y plane (b) z− x plane (c) z− y plane

Figure 6: Non-calibration error distributions of full, simplified calibration, and stereo-SPAAM. The users’ view directions are on the z-axis.

(a) Real (b) Left - Full Calibration (c) Right - Full Calibration (d) Left - SPAAM (e) Right - SPAAM

Figure 7: A real hand and a cup and their virtual images rendered on the left and right displays after calibration. We show the results of our
calibration in (b)–(c) and the stereo-SPAAM in (d)–(e).

Method Error # repetition Device Aligned
Ours < 1 cm 5∼ 10 times Depth camera O

SPAAM > 5 cm ≥ 20 times 6-DOF Tracker X

Table 2: Comparison between our method and stereo-SPAAM. From
left to right, each column indicates a range of calibration errors, the
number of interaction repetitions, a device required for calibration,
and whether left and right displays are well aligned to each other.

the hand in the left image is positioned rightward than the one on
the right. This difference is originated from the horizontal disparity
that causes the depth perception. Since the shapes in the images
are equal, users can match clearly them to a real object. On the
other hand, in the images of the stereo-SPAAM in Figure 7(d)–
(e), the hand on the left is rotated compared to that on the right.
Such discrepancy is likely to disturb the users from overlapping
them onto a real object. This is due to an inherent limitation of
stereo-SPAAM, which is originally developed for monocular OST-
HMDs. The stereo-SPAAM, which is based on SPAAM, focuses
on the correct projection to the 2D displays but lack a mechanism
that keeps the shapes shown the same in both displays.

Finally, Table 2 summarizes the comparison between our method
and the stereo-SPAAM.

6 CONCLUSION

We proposed an accurate, time-efficient, and user-friendly cali-
bration method for OST-HMDs leveraging an affordable depth-
camera. As many low-cost depth-cameras are recently available,
even some OST-HMDs are equipped with built-in depth-cameras

(e.g. Meta 1). We designed two stages of full and simplified cali-
bration based on a practical HMD usage scenario. We empirically
showed that the proposed method is more accurate than the current
state-of-art methods while requiring less calibration points from
users. Moreover, we solved some remaining issues discussed in
the stereo-SPAMM [4], which include removing vertical disparity,
and not requiring special physical targets for calibration. Novice
users could quickly carry out calibration using their hands without
any additional devices. One interesting immediate future direction
is that we can directly collect the calibration data from AR user
interactions. Since we proposed to use users’ hands for obtaining
calibration data, our method can be easily extended to perform cal-
ibration as soon as users start their desired AR tasks without de-
manding any extra calibration procedure.
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A PROOFS OF PROPERTIES OF QUATERNIONS

A.1 Property 1

Property 1 can be proved by direct calculation. We let p = pw +
ipx + jpy + kpz, q = qw + iqx + jqy + kqz, and r = rw + irx + jry +
krz. Through multiplications and inner products, the left and right
terms become

(pq) · r = (pwqw− pxqx− pyqy− pzqz

+ i(pwqx + pxqw + pyqz− pzqy)

+ j(pwqy− pxqz + pyqw + pzqx)

+ k(pwqz + pxqy− pyqx + pzqw)) · r
= rw(pwqw− pxqx− pyqy− pzqz)

+ rx(pwqx + pxqw + pyqz− pzqy)

+ ry(pwqy− pxqz + pyqw + pzqx)

+ rz(pwqz + pxqy− pyqx + pzqw),

(31)

p · (rq∗) = p · (rwqw + rxqx + ryqy + rzqz

+ i(−rwqx + rxqw− ryqz + rzqy)

+ j(−rwqy + rxqz + ryqw− rzqx)

+ k(−rwqz− rxqy + ryqx + rzqw))

= pw(rwqw + rxqx + ryqy + rzqz)

+ px(−rwqx + rxqw− ryqz + rzqy)

+ py(−rwqy + rxqz + ryqw− rzqx)

+ pz(−rwqz− rxqy + ryqx + rzqw).

(32)

It is straightforward to see that Equation 31 and 32 are identical.

A.2 Property 2
Property 2 is also proved by direct calculation. We represent the
quaternion p and q in the vector form of p = [pw px py pz]

T and
q = [qw qx qy qz]

T . We then obtain the vector form of pq and qp:

pq =

pwqw− pxqx− pyqy− pzqz
pwqx + pxqw + pyqz− pzqy
pwqy− pxqz + pyqw + pzqx
pwqz + pxqy− pyqx + pzqw

 , (33)

qp =

qw pw−qx px−qy py−qz pz
qw px +qx pw +qy pz−qz py
qw py−qx pz +qy pw +qz px
qw pz +qx py−qy px +qz pw

 . (34)

We calculate Pq and P̄q:

Pq =

pw −px −py −pz
px pw −pz py
py pz pw −px
pz −py px pw


qw

qx
qy
qz

=
pwqw− pxqx− pyqy− pzqz

pwqx + pxqw + pyqz− pzqy
pwqy− pxqz + pyqw + pzqx
pwqz + pxqy− pyqx + pzqw

 ,
(35)

P̄q =

pw −px −py −pz
px pw pz −py
py −pz pw px
pz py −px pw


qw

qx
qy
qz

=
qw pw−qx px−qy py−qz pz

qw px +qx pw +qy pz−qz py
qw py−qx pz +qy pw +qz px
qw pz +qx py−qy px +qz pw

 .
(36)

We can show pq = Pq from the equality of Equation 33 and 35,
and qp = P̄q from the equality of Equation 34 and 36.

A.3 Property 3
Let N to be a 4× 4 matrix. By eigen-decomposition, we can find
four unit eigenvectors (ν1, ν2, ν3, and ν4) and their corresponding
eigenvalues (λ1, λ2, λ3, and λ4) of N satisfying

Nvi = λvi for i = 1,2,3,4, where λ1 ≥ λ2 ≥ λ3 ≥ λ4.

For a unit vector q ∈ R4×1,

q = σ1ν1 +σ2ν2 +σ3ν3 +σ4ν4.

Since q is a unit vector, ||q||2 = ∑
4
i=1 σ2

i = 1. Finally, we can
derive

qT Nq = σ
2
1 λ1 +σ

2
2 λ2 +σ

2
3 λ3 +σ

2
4 λ4 ≤ λ1.

When σ1 = 1 (q = ν1), qT Nq = λ1. Thus, we prove that qT Nq
is maximized when q is equal to the eigenvector that corresponds to
the maximum eigenvalue of N.

B THE STEREO-SPAAM
The SPAAM is an OST-HMD calibration method that is first in-
vented for monocular OST-HMDs [18], then extended to the stereo-
SPAAM for binocular OST-HMDs [4]. However, the stereo-
SPAAM handles a pair of monocular OST-HMDs independently,
and thus it lacks a mechanism that keeps the shapes shown con-
sistently in both displays, as described in the results of Figure 7



Figure 8: Illustration of left and right display coordinate system (Ol
and Or as centers), and the eye coordinate system (Oe) for the deriva-
tion of projection errors of the stereo-SPAAM. The left and right dis-
play points of vi and vG

i on the xz-plane are denoted by (l,r), and
(lG,rG). el and er are the centers of left and right eyes with an IPD I.

(d)–(e). Since the shapes in the displays are not correspondent, it
is difficult to obtain 3D coordinates from the two display images.
Thus we project the 3D world onto the 2D xz-plane of the eye coor-
dinate system to find the 3D positions from the results of the stereo-
SPAAM.

We start from the relation between the points on the displays of
the OST-HMDs (i.e. display points) and their corresponding 3D
positions that originate from the model of our calibration method.
We let {li} and {ri} to denote the display points for {pi}, and PL and
PR to denote the projection matrices of the left and right displays5.
After the full calibration with the correctly measured PL, PR, and A,
we obtain the relation between {pi} and their display points:

li = PLApi, ri = PRApi. (37)

We now formulate the positions of display points of the left and
right displays {lG

i } and {rG
i } by the stereo-SPAAM. Note that they

are different from the above {li} and {ri}, which are display points
by our calibration method. We let GL and GR to denote the 3× 4
camera matrices, which are the transformations from a point in the
camera coordinate system to the left and right displays. By the
definition of GL and GR, we have the display points for {pi}:

lG
i = GL pi, rG

i = GR pi. (38)

Before further explanation, we introduce the element-wise nota-
tion of the points as follows:

li = [sl tl ]
T , ri = [sr tr]T , vi = [xv yv zv]

T ,

lG
i = [sG

l tG
l ]T , rG

i = [sG
r tG

r ]T , vG
i = [xG

v yG
v zG

v ]
T .

where s and t are indices in the display coordinate system and x, y,
and z are those in the eye coordinate system. The s value is zero
when the display point is exactly in front of the corresponding eye
center. vi and vG

i are the points in the eye coordinate system that
correspond to pi and pG

i in the depth-camera coordinate system as

5PL and PR can be uniquely obtained from the field of views and center
offsets of the displays. When the horizontal and vertical field of views are
θu, θv, and the offsets of the left and right displays are (cu,cv), (−cu,cv),
we have

PL =

[
fu 0 cu 0
0 fv cv 0
0 0 1 0

]
, PR =

[
fu 0 −cu 0
0 fv cv 0
0 0 1 0

]
, where fu =

1
tan(θu/2)

, fv =
1

tan(θv/2)
.

Equation 1. From now, we do not use the homogeneous coordinate
system.

Figure 8 depicts the correspondence between the display points
and the lines on the xz-plane of the eye coordinate system. Each of
the display points of the OST-HMDs corresponds to a line penetrat-
ing the user’s eye that is looking at the point. With an IPD I, the
lines projected onto the xz-plane are:

vel : z = ksl

(
x+

I
2

)
, vGel : z = ksG

l

(
x+

I
2

)
,

ver : z = ksr

(
x− I

2

)
, vGer : z = ksG

r

(
x− I

2

)
,

(39)

where el and er denote the left and right eye center positions and
k is the conversion factor between the line slopes and the s values
(See Figure 8 for better understanding).

In order to find vG
i , we use the fact that vel and ver meet at v and

vGel and vGer meet at vG. Then we have

sG
l
sl

=

xG
v +

I
2

zG
v

xv+
I
2

zv

,
sG

r
sr

=

xG
v − I

2
zG

v

xv− I
2

zv

,
sr

sl
=

xv− I
2

zv

xv+
I
2

zv

. (40)

From Equation 40, it is easy to see

xG
v =

(sl − sr)(sG
l + sG

r )

(sG
l − sG

r )(sl + sr)
xv, zG

v =
sl − sr

sG
l − sG

r
zv. (41)

By Equation 41, we can obtain the projected position error:

ei = vG
i − vi, (42)

where vG
i and vi are vG

i and vi projected onto the xz-plane, respec-
tively. Finally, we use ei instead of ei from Equation 26 to compute
the errors of the stereo-SPAAM.

In our experiment, we do not use the original stereo-SPAAM [4],
due to too large projected errors, which are sometimes larger than
10 m. This is because the error optimization of the stereo-SPAAM
is performed in the homogeneous coordinate system, and thus wx
and wy are used as the objectives of the optimization. The prob-
lem here is, x

w and y
w are the real targets of OST-HMD calibra-

tion, not wx and wy. The stereo-SPAAM works fine with small
non-calibration errors and noises, but when the errors and noises
are large, the stereo-SPAAM decreases w and increases x

w and y
w ,

which leads to a failure in calibration. We avoid such calibration
failures of the stereo-SPAAM by adding the following modifica-
tion. When GL and GR are the camera matrices of the left and right
displays, each of the matrices has a zero element in the 4th row and
4th column. It corresponds to the following statement of section
5.2: we fix the z value of the estimated depth-camera position to
zero. This modification leads the stereo-SPAAM to become more
robust to errors since it prevents w from being too small.


