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An Easy-to-Use Pipeline for an RGBD
Camera and an AR Headset

Introduction

The contribution of this article lies in providing
the code for a working system running with oftf-the-
shelf hardware, but not in advancing theory in computer
vision or graphics. The current work presents a system
which uses one RGBD camera (Microsoft Kinect v2) to
capture people in places, and an AR headset (Microsoft
HoloLens) to display the scene. While the fidelity of the
system is relatively low compared to others which utilize
multiple cameras (i.e., Orts-Escolano et al., 2016), it
displays with a high frame rate, has low latency, and is
mobile in that it does not require a render computer.

Previous Work

Maimone and colleagues (2013) previously exam-
ined the connection between RGBD cameras and AR
headsets. Their system used two Kinect devices to scan
and render a space in an AR headset for avatar-based
telepresence, and projectors to augment the brightness
of the AR headset. Kowalski, Naruniec, and Daniluk
(2015) also examined the combination of RGBD cam-
eras and AR headsets, using multiple Kinect v2 devices
to convert a space into a stream of point clouds. Com-
pared to these systems, the current work is different in
that it is designed to work in a minimalist situation—
without a render machine and using a single camera.

Valorem Reply (2016) introduced HoloBeam, a pro-
prietary system that connects users through Kinect v2
devices and HoloLens devices. Vimeo also introduced
a proprietary streaming system for holograms (Fleisher,
2018). While the terms the companies used differ, the
visual outcomes of these systems, including the system of
this article, do not largely differ from each other.

It should be noticed that there is continuing work for
streaming spatial information based on more sophisti-
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cated models with better visual quality. As a recent ex-
ample, Wei and colleagues (2019) introduced a tech-
nique that reconstructs the face of a VR headset user in a
form it can be rendered in a virtual environment, allow-
ing realistic rendering of people in virtual environments
without the headsets they are wearing.

Description of the System

The hardware part of this system consists of two
parts: laptop with a Kinect v2 and a HoloLens. The soft-
ware also consists of two parts: sending the pixels from a
Kinect v2 to a HoloLens and rendering the pixels in the
HoloLens. This process faced three challenges which
emerged from three particular characteristics of the
devices.

The device characteristics were:

1. Kinect v2 produces large amounts of data.
2. HoloLens requires wireless transmission.
3. HoloLens has low computational power.

The challenges were:

a. Due to (1) and (2), compression is required.

b. Due to (a) and (3), a computationally efficient de-
compression is required.

¢. Due to (3), an efficient rendering technique is
required.
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Figure 1. Overview of compression and decompression of our system. The compression stage is for the laptop connected to a Kinect v2. After

the compression, the VP8 frame and the RVL frame get transmitted to a HoloLens. The decompression stage is for the HoloLens that received the

frames.

Compression and Decompression

Kinect v2 devices have color pixels and depth pix-
els. For the color pixels, we adopted the VP8 codec,
using libvpx and FFmpeg for encoding and decod-
ing. While H.264 has shown at least equivalent perfor-
mance, we instead chose VP8 since libvpx is licensed
under the revised BSD license that is consistent with
our goal to provide the source code of this system. For
depth pixels, as we wanted to avoid the uncertainty
of lossy compression, RVL (Wilson, 2017) has been
chosen for compression as it is computationally inex-
pensive and lossless. Figure 1 provides an overview
of the compression and decompression process of our
system.

Compression Stage

Using a laptop connected to a Kinect v2, the
color pixels are encoded by libvpx into VP8 frames
and the depth pixels are RVL compressed into RVL
frames. While performing this function, the width and
height of the resolution of color pixels were halved
since their resolution (1920 x 1080) was redundantly
large compared to the resolution of the depth pix-
els (512 x 424), especially for our visualization tech-
nique which pairs each depth pixel to a color value.
Both pixels get sent to the HoloLens through a wireless
network.

Decompression Stage

Our system decodes the encoded color pixels using
FFmpeg and converts the decoded pixels into three 8-bit

single channel Direct3D textures, each of them belong-

ing to a color channel of YUV. To avoid conversion from

YUV420—a dominant color space for video streaming
since it allows 4x compression in U and V channels—
to RGB that is computationally expensive, we chose to
create textures in the YUV color space. We used three
textures instead of one to avoid realigning the decoded
pixels into a single texture. The pixels compressed with
RVL were decompressed into a 16-bit single channel
Direct3D texture.

Rendering Stage

With the YUV textures and the depth texture,
a HoloLens can render each pixel of the depth tex-
ture into a quad floating on the space and color the
quads using the color values from the YUV textures.
Our rendering technique requires a mesh precomputed
with the intrinsic variables of the Kinect v2. In a vertex
shader, with the depth texture, the precomputed mesh
turns into a group of points that reflects the depth val-
ues of the depth texture. In a geometry shader, these
points turn into quads. The size of the quads was cho-
sen to be the maximum size that does not intrude adja-
cent quads. Finally, in a fragment shader, the quads are
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Figure 2. An example of our rendering technique. The top-left and the bottom-left are the color and depth pixels from a Kinect v2. The top-right

is the rendered scene captured from a front-view, and the bottom-right is the rendered scene captured from a side-view.

colored based on the YUV textures. Figure 2 is an exam-
ple of our rendering technique.

Our goal in publishing the code for this system is to
allow others to use it as a building block for ongoing de-
velopment of applications for AR headsets, in particular,
telepresence systems. While the quality of the render-
ing is far from perfect, it is our hope that the system will
help developers, researchers, and consumers by provid-
ing a verified method that is portable—it does not re-
quire a machine for rendering—and works on hardware
that is readily available for consumers.

Source Code

The source code and the additional instruc-
tions for this system is available at https: //github.com
/hanseuljun /kinect-to-hololens .
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