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ABSTRACT

Behavioral data is the “gold standard” for experiments in 
psychology. The tracking component of virtual reality systems 
captures data on nonverbal behavior both covertly and continuously 
at high spatial and temporal fidelity, enabling what is called 
behavioral tracing. With previous research analyzing this type of 
data, however, inference has primarily been limited to linear 
relationships of subject-level aggregates. In this work, we suggest 
these rough aggregations are often neither the best according to 
theory nor do they make use of the rich data available from 
behaviorally traced experiments. We also explore the relationships 
between motion and subjective experiences with a previously 
published dataset of 360-degree video and emotion, and we find 
evidence for nonlinear sample-level relationships. In particular, 
reported valence relates with head pitch and pitch velocity, among 
others, and reported arousal relates with head rotation speed and 
yaw velocity, among others. The role of these sample-level 
nonlinear relationships for future work are discussed. 

Keywords: virtual reality, behavior tracing, methodology, 
nonlinear analyses. 

Index Terms: • Human-centered computing - Human computer 
interaction (HCI) - Interaction paradigms - Virtual reality • General 
and reference - Cross-computing tools and techniques - 
Measurement • Applied computing - Law, social and behavioral 
sciences - Psychology 

1 INTRODUCTION

One of the promises of VR in psychology research is the ability 
to fully control the sensory stimuli a participant receives and 
capture all actions a participant makes while in an experiment. Both 
of these threads have their origins in Sutherland’s initial vision of 
virtual reality as the “ultimate display” [1] and were applied to 
research in social psychology [2, 3, 4]. Using the same tracking 
devices used to interact and display a virtual world, virtual reality 
systems collect a user’s physical behavior – commonly, position 
(X, Y, Z) and rotation (yaw, pitch, roll) of the head and hands – in 
fine spatial and temporal resolution during experiments. 

The collection and analysis of this data has recently been dubbed 
behavioral tracing, defined by Yaremych and Persky [5] as “fine-
grained, nearly continuous measurement of physical behavior.” 
Behavioral tracing is of interest to psychologists because of its 
focus on behavior, considered the ‘gold standard’ for experimental 
measures, its covert and continuous collection. 

However, a behavior trace, a set of spatial measurements taken 
over the course of an experiment, must be linked to some other 
variable of interest, often an experimental condition or some 
questionnaire result. Therefore, there must be some mathematical 
transformation from the many behavioral tracing values to one (or 
more) summary variables.  

In this work, we provide a preliminary exploration of nonlinear 
methods and discuss their benefits in a behavioral tracing paradigm. 
First, we describe the theoretical issues underpinning linear 
relationships on behavior tracing data (Section 2). We use these 
insights to describe and justify a potential approach (Section 3). 
Then, we apply this approach to a previously collected dataset of 
motion collected during observation of 360-degree video in order 
to demonstrate its value (Sections 4 and 5). Using these results, we 
discuss findings and implications for future work (Sections 6 and 
7). 

2 PREVIOUS WORK

First, we position this work relative to a growing area of research 
using machine learning on what could be described as behavior 
traces to predict some construct, e.g., cybersickness [6, 7] or mental 
workload [8]. Future work on interpretable machine learning may 
provide opportunities in this space. 

Returning to behavior tracing, we review some threads of work 
and their approaches to aggregation methods. Proxemics, the study 
of interpersonal distance, has been studied extensively in virtual 
reality using linear methods [9, 10, 11]. We note that these linear 
results are contradictory at first glance, as some studies show 
greater interpersonal distance correlating with higher social 
presence [9, 10], while some show an effect in the opposite 
direction [11, 12]. We do not argue these are in contradiction, but 
rather that there is a nonlinear relationship between social presence 
and interpersonal distance, in an analogue to the “uncanny valley.” 
Overall, this highlights the importance of a nonlinear model to fit 
the relationship between the two values. 

Another approach we mention is work by Yaremych and 
collaborators [13] that studied parent’s behavior choosing lunch for 
their child while at a VR buffet. Parents’ path tortuosity, the degree 
of indirectness for a path, correlated with a drop in guilt between 
pre- and post-experiment questionnaires. They suggested path 
tortuosity captured an aspect of the cognitive effort the parents 
undertook while putting together their child’s plate of food. This 
work’s unique usage of a nonlinear measure enabled by behavior 
tracing, and more importantly, its framing of the use of path 
tortuosity as a contribution of the paper, places it as a great example 
of a nonlinear aggregation method. 

The work in the previous literature that we believe to be the best 
example of sample-level nonlinear analyses is McCall and Singer’s 
work [14] of “proxemic imaging”. In a study of fair and unfair 
virtual players of an economic game, the researchers recorded a 
participant’s distance and gaze relative to the virtual agent. They 
found that participants kept closer to the fair player compared to the 
unfair player, and while participants stood directly in front of unfair 
players more often than they study in front of the fair player. These 
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nonverbal behaviors then predicted future behavior (specifically, 
monetary punishment) towards the virtual human. 

In our work, we follow a similar structure to McCall and Singer 
[14] for binning, but instead of testing the significance of clusters 
of points between two study conditions, we predict a construct of 
interest along a reported scale with significance given by a 
permutation test. Also, our work examines a large sample (over 500 
participants) looking at 80 separate pieces of content. 

3 SAMPLE-LEVEL NONLINEAR ANALYSIS

We propose an alternative way to relate behavioral traces to 
constructs of interest that to our knowledge has not been applied in 
relation to VR: a sample-level piecewise constant model. 

First, we motivate our decision for the type of model (3.1). Then, 
we describe the model fitting process (3.2), the null hypothesis and 
the construction of the null distribution (3.3), and finally an 
instantiation of a permutation test that applies this model that also 
takes into account dependence of samples within participants (3.4). 

3.1 Motivation
One description of a classical statistical model is “surface-plus-

noise [15]. Underlying any model is a “surface”, a relationship 
describing some scientific truth that is being examined, and 
“noise”, other effects due to unaccounted variables, incomplete 
knowledge, or errors in measurement that are ignored for 
efficiency’s sake. A choice of model is, in short, a characterization 
of the space, the surface, and the noise. 

The common characterization is Gaussian noise and a linear 
surface. This characterization can be adequate for most work, but 
we argue that the rich data afforded by behavioral tracing enables 
models with more expressive characterizations. In the interest of 
this expressiveness, the model we use is a step function mapping 
the motion data to the construct of interest.  

3.2 Fitting the Model
The goal of the fitting process is to approximate the relationship 

between a continuous, sample-level variable (e.g., head pitch) and 
the corresponding session-level subjective rating (e.g., valence). 
The sample-level variable in session number ݏ of ܵ and index ݐ of ܶ  samples per session is denoted by ݔ௦௧ , and the session-level 
rating of session ݏ is denoted by ݎ௦. 

To begin, all samples are sorted into bins of length ݓ  by 
rounding. The bin ௦ܾ௧  associated with sample ݔ௦௧  is  

௦ܾ௧ = ݓ ඌݔ௦௧ݓ + 12ඐ 
All samples in a bin are matched with their session-level ratings, 

then averaged. More explicitly, መ݂(ܾ) = ∑ ௦ݎ ∙ 1[ ௦ܾ௧ = ܾ]௦,௧∑ 1[ ௦ܾ௧ = ܾ]௦,௧  

Note that each bin can have samples from many participants and 
each participant can (and often does) have multiple samples in a 
bin.  

Treating all the samples in the same way regardless of participant 
or session allows the function መ݂(ܾ) to be interpreted in a simple 
way: given the motion value ݔ௦௧  (e.g., pitch) of a single randomly 
chosen sample from all sessions in the experiment, what is the 
expected value for the subjective rating ݎ௦  (e.g., valence) for the 
session the sample was taken from? Naturally, the best estimate is 
the average of all subjective ratings with the given motion value. 

This mean is performed over the construct values, which are 
often collected as Likert-scale data. There has been some 
controversy on whether to treat Likert-scale data as ordinal or 
interval data, and we refer the reader to discussion in [16] for 
grounding for this step.  

To predict a value for an entire session, rather than a sample, we 
define the predicted value of a session መ݂(ݏ) to be መ݂(ݏ) = 1ܶ ෍ መ݂( ௦ܾ௧)௧் ୀଵ  

 i.e., the mean of the predicted samples within the session. 
These fitted values are not independent of each other, as they 

share samples from the same session, and the averages themselves 
are not composed of some number of independent equally weighted 
parts, as many samples within a bin come from the same session. 
These dependencies can complicate null hypothesis testing, 
discussed below. 

3.3 The Null Hypothesis
In order to visually and statistically compare against some null 

hypothesis, it is necessary to specify the null hypothesis and 
develop a way to calculate a null distribution. We use a Monte 
Carlo method to estimate the null distribution by running the same 
curve fitting process described above (binning and averaging the 
rating) upon data where the session ratings ݎ௦ have been shuffled. 
This maintains the distribution of the rating variable as well as the 
correlations among the samples from the same session.  

We note that this does break the correlations among sessions 
using the same stimulus or from the same participant. These 
correlations can be preserved if all ratings are shuffled within each 
stimulus or within each participant, allowing the null hypothesis to 
also account for stimulus or participant respectively. 

3.4 Significance
The statistical test we propose is in essence a permutation test. 

The essential format of a null-hypothesis test is to measure some 
quality of interest upon the empirical data and compare its value to 
a distribution of values drawn under the null hypothesis.  

In our case, our quantity of interest is the predictive strength of 
how much one half of the data is upon the other half of data. First, 
the data is grouped by session and split into two halves, ensuring 
all samples from one session remain together. The curve-fitting 
process is applied to one half of the data, and the fitted function is 
used to predict the rating in the second half of the data. This 
prediction is correlated with the empirical ratings, and the 
correlation’s t-value represents the strength of the relationship. This 
split is made many times – in our results, it is performed 30 times 
– and all t-values are averaged. The result is one value estimating 
the predictability of one half of the data upon the other. 

The second part of any null hypothesis significance test is the 
comparison against a null distribution. The process for creating a 
null distribution is the same as detailed in section 3.3 on shuffling. 
Once this simulation of data is created, its predictability is 
estimated using the split-half process above. This reshuffling of 
session-level ratings is done many times to approximate the null 
distribution. Finally, the empirical predictability is compared 
against the predictability values within the null distribution, 
producing our reported p-value.  

4 CASE STUDY

We have performed sample-level nonlinear analyses on data 
previously collected in by Jun and collaborators [17]. Because the 
methods are described in detail elsewhere, it suffices to be brief 
about the materials and procedure. 

4.1 Materials and Procedure
In the previously collected dataset we obtained, a total of 511 

participants were collected from two locations: The Tech, a 
technology museum in San Jose, USA, and the Stanford University 
campus.  
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Participants began the study by completing a demographics 
questionnaire, and then watched five 360-degree videos, each 
twenty seconds long, randomly selected from a pool of eighty clips. 
After each video, the participant rated their valence, arousal, 
presence, simulator sickness, and liking. 

The content was displayed using the HTC Vive wired headset, 
and body motion was tracked using the HTC Vive headset and hand 
controllers. 

4.2 Data
The data relevant to the present work fall under two headings that 

we refer to as session-level and sample-level data.  
Session-level data refers to data uniquely identified by a 

combination of participant and stimulus. Each stimulus was a 
twenty-second 360-degree video clip. Session data consists of nine-
point Likert scale ratings of valence and arousal, as well as five-
point Likert scale ratings on simulator sickness, liking, and 
presence. 

Sample-level data refers to spatial data collected at about 90Hz 
that includes position (X, Y, Z) and rotation (yaw, pitch, and roll). 
The conventions follow defaults in the game engine Unity. Position 
is based upon the the left-handed coordinate system that +Y is up, 
+Z is forward, and +X is right. Rotation is based upon the intrinsic 
rotations about the +Y axis (yaw), then +X axis (pitch), and then 
+Z axis (roll), equivalent to the extrinsic rotations in the opposite 
order. All rotations follow a left-handed convention. 

In addition to the raw data, there are seven additional data 
streams computed from the raw data. Six streams are first-order 
differences over time as a finite-sample approximations of velocity. 
The seventh stream, rotation speed, is the angle between the two 
consecutive points created by the intersection of the unit sphere and 
the ray along the direction the participant’s head is facing. 

4.3 Analysis
The seven differential measures (i.e., the six velocities and 

rotation speed) were produced by taking the first-order difference, 
then the absolute value, and finally the natural logarithm. The log-
transform was performed because the probability density 
distribution sharply peaked around zero. This process is validated 
by the fact that values are spread relatively evenly (differing only 
by 4x) across a huge range of magnitudes (100x between largest 
and smallest).  

The sample-level nonlinear models were fitted using the method 
described in section 3. The number of bins ranged from 40-100 and 
was chosen depending on the range and density. We have found the 
ideal width is the smallest where the “jitter” between bins is just 
beginning to be visible. This signals the resolution is as fine as 
possible. 

4.4 Hypotheses
Because of the exploratory nature of this method, we are comparing 
all reported subjective, session-level values (arousal, simulator 
sickness, valence, liking, and presence) against all thirteen 
measures of motion. We report p-values with Bonferroni-Holm 
correction made across the 65 comparisons.

5 RESULTS

Of the 65 comparisons made, 36 relationships were more 
predictive in the split-half test than would be expected by chance, 
and 23 of these relationships are significant while accounting for 
the multiple comparisons. Due to space concerns, plots will only be 
shown for selected relationships, but all plots will be available in 
the supplemental material. Six plots of motion are displayed in 
Figure 1. 

Figure 1. Six plots relating motion to a construct of interest.
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In Figure 1, the x-axis is the motion measure, and along it are the 
‘buckets’ in which samples are sorted. For each bucket (column), 
the black point represents the fitted value, e.g., the mean rating of 
all samples within the bucket. The transparent ribbon represents the 
interval of 95% density of values fitted under the null distribution. 
The color of each column represents the z-score of the empirically 
fitted value against the null distribution, e.g., with a z-score of 2.6, 
the fitted value was 2.6 standard deviations above the mean of the 
null distribution. This color provides visual information of the 
certainty in the signal, which visually highlights sections with 
known deviations, even if the deviations are small. 

The limits of the x-axis are set such that all buckets displayed 
have data from at least 25 different participants and at least 1800 
samples total (20s of data). This allows the effects not to be dwarfed 
by large variance in buckets with few samples. 

Because of the large number of significant relationships, they 
will be grouped into categories according to a post-hoc 
interpretation of the results. The first set of findings relate motion 
to valence primarily, with a similar but secondary relationship to 
liking (5.1). The second set of findings relate motion to arousal 
(5.2). The final set of findings are relationships we attribute the 
participant as a confounding factor (5.3).  

5.1 Motion and Valence
There are a total of eight relationships we collect under the 

heading of valence, which we break down into four subsections. 
The first is the relationship between valence and pitch, the second 
collects all relationships between valence and any measure of 
velocity, the third is two relationships with liking and motion that 
mimic their respective relationships with valence, and the fourth is 
a relationship between valence and yaw. 

In the plot with pitch (Figure 1, panel A) there are three regions 
that show a deviation from the null hypothesis. The first is a 
positive deviation from about 40° above the horizon to 15° above 
the horizon, meaning that in sessions where participants spent 
relatively more time facing 15°-40° above the horizon, they rated 
the video with higher valence. The second is a negative deviation 
10° to 15° below the horizon. Finally, the range from about 30° to 
70° below the horizon has a small but consistent positive deviation. 
When ratings were shuffled within videos and within participants, 
the relationship remained ( p = 0.02 and p = 1.71 × 10ିହ 
respectively), i.e., the effect was not merely due to videos or due to 
participants. 

The four relationships with velocity (pitch velocity, roll velocity, 
Y velocity, and Z velocity) are grouped together because of their 
similar pattern: lower values in a lower range, higher values in a 
slightly higher range, and weakly positive values at the highest 
ranges. Pitch velocity is displayed in Figure 1 Panel B. The 
crossover point is different among the different segments, but they 
all show that visible motions are linked with a higher rated valence, 
while very steady position maintenance indicates lower valence. 
However, for each measure of velocity this effect flattens out 
beyond a certain point.  

The two relationships with liking follow very similar patterns to 
the respective valence ratings. Both relationships to pitch have a 
sharp trough surrounded by higher rounded curves. Liking and 
pitch velocity shows a relationship similar to valence in that the 
same speed is the crossover point between a positive and a negative 
deviation. In addition, valence and liking correlate with a value of ݎଶ = 0.59, which is the second-highest between any two of the five 
questionnaire values. The only pair larger than this of the other 19 
pairs of variables is the pair of liking and presence. Therefore, we 
interpret this data to suggest that liking is showing this effect due 
to its connection to valence. 

Finally, there is a relationship between valence and yaw (Figure 
1, Panel C). The plot has two visual features of note. First, overall, 

sessions with more samples on the left side also tend to have higher 
valence. However, when the null hypothesis is modified to include 
variation due to stimulus, this result no longer holds. Second, the 
curve is not as smooth as others we have investigated so far. We 
suggest this result is because yaw varies relatively more across 
videos than within a video. 

5.2 Motion and Arousal
The three types of motion that are correlated with arousal are 

pitch, rotation speed, and yaw velocity. We pair up the rotation 
speed and yaw velocity because they are both types of motion and 
have similar curves. 

The relationship between rotation speed and arousal Figure 1 
panel E is as follows. At the lowest ends of rotational motion, when 
the participant’s effectively stationary, there is no signal, or slightly 
positive. In the range of from about 0.4°/s to 2°/s, the deviation is 
negative, but at speeds beyond that, the deviation is positive. One 
interpretation of this result is the difference between ‘wandering’ 
in which the user explores the space slowly and calmly, and 
‘tracking’ in which the user explores the space with focus on one 
salient object. 

The relationship between arousal and pitch is displayed in Figure 
1 panel D. Similar to the relationship between pitch and valence, 
there is a drop in arousal in the range just below horizontal. In 
contrast to valence, though, high arousal in this dataset is associated 
with looking downward 20°-40° degrees. In contrast to the 
relationship between pitch and valence, however, once the video is 
accounted for, the relationship is no longer significant. We interpret 
this noting that some videos in the dataset were set high on a 
balcony or tower and consider that looking down may be more 
common in these situations. 

5.3 Relationships Mediated by Participant
Finally, there are twelve relationships that we have judged to be 

mediated by participant. To explain how the model captures this, 
let us consider an example of x-position and liking. The span of x-
position values varied more across participants than within 
participants, i.e., participants did not move much horizontally. 
Therefore, a certain bucket of x-position would be dominated by a 
few participants. Furthermore, all questionnaire results showed 
larger variance within each stimulus (due to participant), than 
within the participants (due to stimulus), even after accounting for 
differences in sample size.  

Because the initial significance test did not account for 
dependence between sessions due to the same participant or the 
same video, it is very likely the signal that carries between the train 
and test set is due to participant. This is corroborated by results 
showing all relationships of this type did not have significant values 
once participants’ average scores were accounted for. 

For almost all of these relationships, we hesitate to interpret a 
connection between the motion and the construct. However, the 
relationship between y-position (head height) and simulator 
sickness stands out. Previous work has shown that men tend to 
report less simulator sickness than women [18]. In addition to the 
fact that on average men are taller than women, we interpret this 
relationship as the relationship between height, gender, and 
simulator sickness. 

6 DISCUSSION

The relationship results span a wide range of constructs and 
motion types. The primary types of nonlinear relationships 
discovered in this dataset were relationships between valence or 
arousal and head pitch or motion. There were also many 
relationships that were statistically significant, but lost significance 
when accounting for data shared across participants.  
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6.1 Findings
 There were 23 relationships significant at a family-wise error 

rate of α = 0.05. These values reject the null hypothesis that the 
predictive ability on one half of sessions to the other half of sessions 
was only due to chance. When tested against more reasonable null 
hypotheses accounting for the dependence of values from the same 
participant or from the same stimulus, many of these relationships 
lose their significance. In a post-hoc process, we group these 
findings together into three clusters: relationships with valence, 
relationships with arousal, and relationships mediated by 
participant. 

Motion values that have some relationship with valence include 
pitch orientation; pitch, roll, Y, and Z velocity; and yaw orientation. 
We also include relationships with liking in this cluster due to 
liking’s high correlation with valence and similarly shaped 
relationship with motion. The motions that relate to arousal include 
pitch orientation, rotation speed, and yaw velocity. Finally, there 
are many significant relationships that we interpret as capturing 
only the individual differences in this particular set of participants. 

6.2 On Linearity
One of the goals of psychology is to discover and understand the 

links between observable behavior and internal state. Progress in 
understanding can either be made by discovering previously 
unknown links between construct and behavior, or more deeply 
understanding links already found, including the study of boundary 
conditions, mediators, and moderators. Another contribution that 
falls under the latter set is refining the quantitative values driving 
the link. We argue that one common impediment to this refinement 
is the assumption that relationships of interest are likely to be linear. 

The value of richer, nonlinear models is twofold: first, it provides 
more details to generate hypotheses from, and second, these details 
can distinguish between different theories more effectively than 
linear models. In fact, Meehl [19] notes this lack of specificity of 
linear models makes theories less falsifiable as measures become 
more precise.  

Furthermore, we opine that many expected relationships between 
motion and a construct of interest are not linear. To support this 
preliminary conjecture, consider the relationship between head 
pitch (tilting the head up and down) and affective valence (positive 
or negative). This effect is evidenced by common phrases like “hold 
your head up” and has been empirically verified using photos of 
winning and losing Olympic athletes [20].  

In work performed by Jun et al. [17], among others, a mean over 
all time points in a trace is related to a construct of interest. In this 
example, it would be the mean of head pitch over all samples in a 
linear model predicting the valence the participant reported. Using 
the variables from section 3.2, and letting β଴  and  βଵ  be the y-
intercept and slope respectively, this process is expressed as: መ݂(ݏ) = β଴ + βଵ ⋅ 1ܶ ෍ ௦௧௧்ୀଵݔ  

We note that, by linearity of the mean, this is mathematically 
equivalent to first performing the linear transformation from head 
pitch to valence at the sample level, then averaging across samples. መ݂(ݏ) = 1ܶ ෍ (β଴ + βଵ ⋅ ௦௧)௧்ୀଵݔ  

If we accept the first as reasonable, then this requires us to accept 
this second interpretation of the pitch having implications for 
valence at the sample level as equally reasonable, and that the 
proper mapping from pitch to valence is perfectly linear. Taking 
this a step further, this would mean the valence predicted for a 
sample in which a participant is looking 50 degrees upward is five 
times the valence for a participant looking 10 degrees upward. 

However, a more mundane intuition of the situation would 
expect the cause of such great head tilt to be a conversation with 

someone on a balcony or taking a look at a spider in the corner of 
the room. A difference of fifty degrees is not five times the effect 
of ten degrees. 

In short, these transformations from measures to constructs are 
as much a part of how one interprets an experiment as the choice of 
independent variables, dependent variables, procedure, and stimuli, 
and should be treated as such.  

6.3 Limitations and Future Work
Because of the novelty of this work, we consider some of its 

limitations and encourage directions for future work. 
These models are not without their drawbacks. Because of the 

complexity of the models relative to a linear or quadratic model, 
there is a greater ability to fit to noise, as indicated by the 
participant-mediated relationships. In addition, the degrees of 
freedom available to the researcher in choosing the model may 
remain hidden if the model types are not preregistered. Furthering 
the statistical issues, statistical tests on nonlinear models are not 
well-established. Future work can integrate related statistical 
methods such as CANOVA [21] and cluster analysis [22]. 

This process applies population-level features to individual’s 
behavior. This is only fully acceptable in the ergodic case [23], 
which almost certainly does not apply to these types of human 
behaviors. Future work can leverage the paradigm of “small data” 
[24] to focus on individuals and person-level models. This process 
also assumes, by the use of mean over all samples within a session, 
that all moments in time are equally important in calculating the 
rating. Theories of attention would question this heuristic.  

In the interest of turning discussion of relationships beyond mere 
existence and direction and towards characterizations, it is 
important to stress the effect size between motion on rating is small. 
In this dataset, the weakest relationship between two questionnaire 
items, simulator sickness and presence, has an ηଶ value of 0.02, 
while the strongest relationship between a questionnaire item and a 
behavioral trace, between head pitch and valence has an ηଶ  of 
0.0138. 

It is worth noting that each of these tests are merely showing that 
there was some sort of relationship between the motion and the 
construct, not that the relationship was necessarily nonlinear. While 
we have developed a potential comparison method, in the interest 
of space and due to the preliminary nature of the tests, we have not 
included the results of this process. 

7 CONCLUSION

In this work, we propose a simple nonlinear analysis based on 
fixed-width piece-wise constant functions that has not been applied 
to virtual reality and behavior tracing. We then apply this method 
to a previously collected dataset to uncover previously unseen 
relationships.  

We find several relationships between motion and constructs of 
interest within the dataset from Jun and collaborators [17], 
highlight especially head pitch and valence, rotation speed and 
valence, and rotation speed and arousal 

Some simple recommendations from this work include 
visualizing sample-level data, not necessarily immediately 
aggregated by participant. Additionally, we encourage researchers 
to explore models beyond a linear model of a session-level mean, 
especially when either previous work or researcher’s intuition 
indicate something potentially more appropriate. 

We hope these methods will improve the efficiency and 
usefulness of behavioral tracing as a method and reinforce the value 
of virtual reality as a methodological tool for psychology. 

REFERENCES

151

Authorized licensed use limited to: Stanford University. Downloaded on January 03,2022 at 22:14:15 UTC from IEEE Xplore.  Restrictions apply. 



[1]  I. E. Sutherland, "The ultimate display," Proceedings of 
the Congress of the Internation Federation of Information 
Processing (IFIP), p. 506–508, 1965.  

[2]  M. Slater and S. Wilbur, "A framework for immersive 
virtual environments (FIVE)," Presence: Teleoperators 
and Virtual Environments, vol. 6, p. 603, 1997.  

[3]  J. Blascovich, J. Loomis, A. C. Beall, K. R. Swinth, C. 
L. Hoyt and J. N. Bailenson, "Immersive Virtual 
Environment Technology as a Methodological Tool for 
Social Psychology Jim," Psychological Inquiry, vol. 13, p. 
103–124, 2002.  

[4]  J. Fox, D. Arena and J. N. Bailenson, "Virtual Reality: 
A Survival Guide for the Social Scientist," Journal of 
Media Psychology, 2009.  

[5]  H. Yaremych and S. Persky, "Tracing physical behavior 
in virtual reality: A narrative review of applications to 
social psychology," Journal of Experimental Social 
Psychology, vol. 85, no. April, 2019.  

[6]  R. Islam, Y. Lee, M. Jaloli, I. Muhammad, D. Zhu, P. 
Rad, Y. Huang and J. Quarles, "Automatic Detection and 
Prediction of Cybersickness Severity using Deep Neural 
Networks from user's Physiological Signals," Proceedings 
- 2020 IEEE International Symposium on Mixed and 
Augmented Reality, ISMAR 2020, p. 400–411, 2020.  

[7]  N. Martin, N. Mathieu, N. Pallamin, M. Ragot and J. M. 
Diverrez, "Virtual reality sickness detection: An approach 
based on physiological signals and machine learning," 
Proceedings - 2020 IEEE International Symposium on 
Mixed and Augmented Reality, ISMAR 2020, p. 387–399, 
2020.  

[8]  T. Luong, N. Martin, A. Raison, F. Argelaguet, J. M. 
Diverrez and A. Lecuyer, "Towards Real-Time 
Recognition of Users Mental Workload Using Integrated 
Physiological Sensors into a VR HMD," Proceedings - 
2020 IEEE International Symposium on Mixed and 
Augmented Reality, ISMAR 2020, p. 425–437, 2020.  

[9]  J. N. Bailenson, J. Blascovich, A. C. Beall and J. M. 
Loomis, "Equilibrium Theory Revisited: Mutual Gaze and 
Personal Space in Virtual Environments," Presence: 
Teleoperators and Virtual Environments, vol. 10, p. 583–
598, 2001.  

[10] J. N. Bailenson, J. Blascovich, A. C. Beall and J. M. 
Loomis, "Interpersonal Distances in Virtual 
Environments," Personality and Social Psychology 
Bulletin, vol. 29, p. 819–833, 2003.  

[11] M. Lee, G. Bruder, T. Hollerer and G. Welch, "Effects 
of Unaugmented Periphery and Vibrotactile Feedback on 
Proxemics with Virtual Humans in AR," IEEE 
Transactions on Visualization and Computer Graphics, 
vol. 24, p. 1525–1534, 2018.  

[12] N. Norouzi, K. Kim, M. Lee, R. Schubert, A. Erickson, 
J. Bailenson, G. Bruder and G. Welch, "Walking your 
virtual dog: Analysis of awareness and proxemics with 
simulated support animals in augmented reality," 
Proceedings - 2019 IEEE International Symposium on 
Mixed and Augmented Reality, ISMAR 2019, p. 157–168, 
2019.  

[13] H. E. Yaremych, W. D. Kistler, N. Trivedi and S. 
Persky, "Path Tortuosity in Virtual Reality: A Novel 
Approach for Quantifying Behavioral Process in a Food 

Choice Context," Cyberpsychology, Behavior, and Social 
Networking, vol. 22, p. 486–493, 2019.  

[14] C. McCall and T. Singer, "Facing off with unfair others: 
Introducing proxemic imaging as an implicit measure of 
approach and avoidance during social interaction," PLoS 
ONE, vol. 10, p. 1–14, 2015.  

[15] B. Efron, "Prediction, Estimation, and Attribution," 
Journal of the American Statistical Association, vol. 115, 
p. 636–655, 2020.  

[16] J. Carifio and R. Perla, "Resolving the 50-year debate 
around using and misusing Likert scales," Medical 
Education, vol. 42, p. 1150–1152, 2008.  

[17] H. Jun, M. R. Miller, F. Herrera, B. Reeves and J. N. 
Bailenson, "Stimulus Sampling with 360-Videos: 
Examining Head Movements, Arousal, Presence, 
Simulator Sickness, and Preference on a Large Sample of 
Participants and Videos," IEEE Transactions on Affective 
Computing, p. 1–1, 2020.  

[18] S. Weech, S. Kenny and M. Barnett-Cowan, "Presence 
and cybersickness in virtual reality are negatively related: 
A review," Frontiers in Psychology, vol. 10, p. 1–19, 
2019.  

[19] P. E. Meehl, "Theory-Testing in Psychology and 
Physics: A Methodological Paradox," Philosophy of 
Science, vol. 34, p. 103–115, 1967.  

[20] J. L. Tracy and D. Matsumoto, "The spontaneous 
expression of pride and shame: Evidence for biologically 
innate nonverbal displays (Proceedings of the National 
Academy of Sciences of the United States of America 
(2008) 105, 33, (11655-11660) DOI: 
10.1073/pnas.0802686105)," Proceedings of the National 
Academy of Sciences of the United States of America, vol. 
105, p. 20044, 2008.  

[21] Y. Wang, Y. Li, H. Cao, M. Xiong, Y. Y. Shugart and 
L. Jin, "Efficient test for nonlinear dependence of two 
continuous variables," BMC Bioinformatics, vol. 16, p. 1–
8, 2015.  

[22] S. Hayasaka and T. E. Nichols, "Validating cluster size 
inference: Random field and permutation methods," 
NeuroImage, vol. 20, p. 2343–2356, 2003.  

[23] P. C. M. Molenaar, "A Manifesto on Psychology as 
Idiographic Science: Bringing the Person Back Into 
Scientific Psychology, This Time Forever," Measurement: 
Interdisciplinary Research & Perspective, vol. 2, p. 201–
218, 2004.  

[24] D. Estrin, "Small data, where n = me," Communications 
of the ACM, vol. 57, p. 32–34, 2014.  

 
 

152

Authorized licensed use limited to: Stanford University. Downloaded on January 03,2022 at 22:14:15 UTC from IEEE Xplore.  Restrictions apply. 


