AR Headsets

Tue, July 7 (Week 3)
Computer Display Color System

Figure 11: Optical see-through HMD conceptual diagram
Computer Display Color System
Collimated Light & Eye Box

Figure 11: Optical see-through HMD conceptual diagram
Collimated Light & Eye Box

Figure 11: Optical see-through HMD conceptual diagram
Collimated Light & Eye Box
Collimated Light & Eye Box

Figure: Eye (black) inside the eye box (green) in front of a display (blue)
Interpupillary Distance & Binocular Disparity

From collimated lights, pixels are angles, not positions.

Same angles with larger interpupillary distance (IPD) mean longer distances.
IPD & VR Headsets
The Problem with Focal Length

In most cases, an optical device with lenses can have only one focal length.
The Problem with Focal Length

In most cases, an optical device with lenses can have only one focal length.

Different binocular disparity, but same focal length...
Field of View

Human Field of Vision (around 150° x 120°)

Typical VR Headset today (around 90° x 90°)

MagicLeap One (40° x 40°)

Hololens (30° x 17.5°)

DAQRI Smart Glasses (34° x 18°)

AR/VR Field of View Comparison

HoloLens 30°

Magic Leap One 40°

PlayStation VR ~100°
Spatial Sound

Head-related transfer function (HRTF)
Spatial Sound

HRTF is a complicated function that depends on frequencies of sound, the positions of the source and listener, and the structure and material of the surrounding space...
Regarding the Focal Length Problem

<table>
<thead>
<tr>
<th></th>
<th>Project North Star</th>
<th>HoloLens 1</th>
<th>Magic Leap 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Focal Length (≈ 0.5 m)</td>
<td>$300 (2018)</td>
<td>$3000 (2015)</td>
<td>$2300 (2018)</td>
</tr>
<tr>
<td>2 Focal Lengths (≈ 1 or 3 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Light Field Display

A possible improvement for displays, in terms of focal lengths, but in the future yet.