
Rendering

Tue, July 21 (Week 5)

1. Meshes + Textures + Matrices + Shaders gets prepared in the CPU.

2. They get sent to GPU that creates pixels using them.

3. The pixels from the GPU gets sent to the monitor.

Rendering: Mesh to Pixels

1. Meshes + Textures + Matrices + Shaders gets prepared in the CPU.

2. They get sent to GPU that creates pixels using them.

3. The pixels from the GPU gets sent to the monitor.

Rendering: Mesh to Pixels

Haven’t talked about this part that
much yet, actually.

Mesh

Rendering Pipeline

+ matrices

Vertex Shading
Projects vertices in a mesh on the screen using matrices.

View matrices includes

1. Tracking data of person is in the real world

2. IPD of the person

Also, for AR/VR, there are two view matrices for each of the eyes!

Rasterization
Find the pixels on the screen that are inside the triangles of projected vertices.

The triangle list of the mesh is used here.

Pixel Shading
Find a color for each pixel in the projected triangles.

The Sophistication of the Pipeline
Year 2000 Year 2010 Year 2020

+ matrices

Single Buffering
Simply send the rendered pixels to the monitor.

Buffer

Single Buffering
Tearing!

Buffer

Double Buffering
Update the back buffer and then copy it to the front buffer when the back
buffer is ready.

Back
Buffer

Front
Buffer

Double Buffering
No Tearing!

Back
Buffer

Front
Buffer

While double buffering removes tearing, it adds an additional step.

Additional step means adding latency (e.g., 1/120 sec in average for 60 Hz
setting), which is terrible for AR/VR.

(1/120 sec is the average of 0~1/60 sec.)

Example of AR/VR being fundamentally different from PC:

Some AR/VR devices skip double buffering since latency is worse than
tearing.

Double Buffering with AR/VR

Asynchronous Reprojection
Another approach for AR/VR, but not PC.

Preparing larger field of view and then picking where to actually show.

Normally...

CPU GPU

time

Last moment tracking
information can be captured.

Asynchronous Reprojection
Another approach for AR/VR, but not PC.

With Asynchronous Reprojection

CPU GPU

time

Last moment tracking
information can be captured.

C
P
U

G
P
U

Asynchronous Reprojection
Another reason: applying tracking information even when the GPU fails to
update in time.

Normally,

CPU GPU

time1/60 sec 1/120 sec

Sends the previous frame to
the monitor.

Sends the same frame to the
monitor again.

Asynchronous Reprojection
Another reason: applying tracking information even when the GPU fails to
update in time.

With Asynchronous Reprojection,

CPU GPU

time1/60 sec 1/120 sec

Sends the previous frame to
the monitor.

Sends the same frame but
with new tracking data
applied to the monitor.

Asynchronous Reprojection
Another reason: applying tracking information even when the GPU fails to
update in time.

With Asynchronous Reprojection, Head turned left

Remote Rendering
Borrowing the computational power from larger machines.

Camera Input,
Gestures

Pixels to Render

Remote Rendering
Similar to below, but through wireless communication.

Buffer

Selective Attention
It is very inefficient and also impossible for humans to look at and understand
the whole scene.

Foveated Rendering
Saving computational power by considering where the user is looking at.

Double Pass Rendering
The most straightforward method for AR rendering.

+ matrices

Copy mesh and
textures 2 times
from CPU to GPU.

Single Pass Rendering
A better method with only one set of copies from the CPU to the GPU!

+ matrices

Single Pass Rendering
Skipping a copy saves time!

Single Buffering: tearing is bad, but for AR/VR, latency is evil.

Asynchronous Reprojection: at least approximately apply tracking data.

Remote Rendering: borrow a neighbor PC’s power if that helps.

Foveated Rendering: skip details of the pixels that people would care less.

Single Pass Rendering: leverage that scenes for left and right eyes are similar.

Techniques for Lower Latency

