Tracking

Tue, July 21 (Week 5)

Head Tracking

Head tracking is a computational problem of converting

Signals from sensors:

accelerometer, gyroscope, magnetometer, and color/depth cameras

To position and rotation of the headset in the real world.

Position vs. Velocity (Angle vs. Angular Velocity)

There are sensors good at accurately knowing the current position (or angle)

: magnetometer, color/depth cameras (outside of AR, ruler)

And that are good at quickly catching the velocity (or angular velocity)

: accelerometer, gyroscope (outside of AR, speed camera)

Sensor Fusion

Gyroscope: quality data source for angular velocity

Magnetometer: quality data source for the absolute angle

Gyroscope + Magnetometer: rotation value quickly responding to quick motions that is also correct

Point Cloud

Point Cloud

Iterative Closest Point (ICP; Besl & McKay, 1992)

Algorithm matching two point clouds to each other with the combination of

Translation, Rotation, and Scaling (the TRS of computer graphics).

Kinect Fusion (Newcombe et al., 2011)

Figure 3: Overall system workflow.

Kinect Fusion (Newcombe et al., 2011)

GPS (Global Positioning System)

Wifi Tracking

Similar to GPS, but for indoors.

Earth : Satellites = Building : Wifi Routers

User movement

What user sees in headset

Headset stops tracking when user turns away from the sensor

https://youtu.be/Qu-HuCk8guU

Object Tracking

Face Detection

Viola-Jones Object Detection

Face Tracking

https://youtu.be/86-tHA8F-zU

Tesla's Case of Tracking without Depth Cameras

https://youtu.be/fKXztwtXaGo

Tesla's Case of Tracking without Depth Cameras

Accomplishment of a task does not require perfect tracking.

It requires tracking enough for the specific task.

Notice that we, people, are also not perfect at tracking but still alive.

Lesson: In terms of tracking, AR devices need the right amount of sensors, not everything. Deciding the right level of sensors require a well-defined goal, set of tasks.

A Possible Future for Tracking...

A Possible Future for Tracking...

